Synthesis of 2,4-Dideoxy-4-[(\underline{S}) -methyl- and (\underline{R}) -cyclohexyl-phosphinyl]- α , β - \underline{D} -erythro-pentofuranoses. The First P-in-Ring Sugar Analogues of 2-Deoxy- \underline{D} -ribofuranose Type

Hiroshi YAMAMOTO, * Ayashi NOGUCHI, Kenji TORII, Keiji OHNO,
Tadashi HANAYA, Heizan KAWAMOTO, and Saburo INOKAWA
Department of Chemistry, Okayama University, Tsushima, Okayama 700

Starting with 3-deoxy-1,2- $\underline{0}$ -isopropylidene- α - \underline{D} - \underline{ribo} -hexofuranose, methyl 2,4-dideoxy-4-[(methoxy)methyl- and cyclohexylphosphinyl]- \underline{D} - $\underline{glycero}$ -pentopyranosides were prepared in a 9 step sequence (20-25% overall yield). These were converted into the title compounds, which were characterized as the 1,3,5-tri- $\underline{0}$ -acetates.

Because of a considerable interest in the physicochemical properties and potential biological activity, various sugar analogues possessing a phosphorus atom in place of oxygen in the hemiacetal ring have been prepared in recent years: $^{1)}$ e.g., $\underline{\mathbb{D}}$ -glucopyranoses $\mathbf{1}^{2)}$ and $\underline{\mathbb{D}}$ -ribofuranoses $\mathbf{2}$. We now describe a convenient synthesis of the first P-in-ring sugar analogues with 2-deoxy- $\underline{\mathbb{D}}$ -ribo-

furanose structure having an alkylphosphinyl group in the ring through such a scheme that can readily be applicable for the preparation of various other 2,4-dideoxy-4-phosphinyl-D-and L-aldofuranoses.

Thus, 3-deoxy-1,2-0-isopropylidene- α -D-ribo-hexofuranose (3) was converted into the key intermediates 7a (20% overall yield) and 7c (25%) by sequence of $3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$ (9 steps) as illustrated in Scheme 1. Then, 7a and 7c were (separately) subjected to the reduction with sodium dihydrobis(2-methoxyethoxy)-aluminate (SDMA), followed by hydrolysis in ethanolic 0.5 M HCl at 80 °C, affording crude 2,4-dideoxy-4-(methyl- and cyclohexylphosphinyl)-D-glycero-pentofuranoses

Scheme 1. a: R=Me, b: R=Ph, c: R=cyclohexyl. Reagents: i, NaIO₄; ii, MeNO₂-MeONa/MeOH; iii, Ac₂O-AcONa; iv, RPH(=O)OMe in benzene, 80 $^{\rm O}$ C; v, H₂-PtO₂; vi, NaNO₂/AcOH; vii, aq AcOH; viii, NaIO₄; ix, H⁺/MeOH; x, SDMA; xi, 0.5 M HCl-EtOH; xii, Ac₂O-Pyridine.

1576 Chemistry Letters, 1988

(8a and 8c), respectively, which were converted into their tri-O-acetates (9a and 9c) by the usual method (in 15 and 18% overall yields from 7a and 7c, respectively). By rechromatography of 9a in a column of silica gel with 19:1 (v/v) ethyl acetate-ethanol as the eluant, a pure product 1,3,5-tri-0-acety1-2,4-didexoy-4-[(\underline{S})-methylphosphinyl]- β - \underline{D} - \underline{e} - \underline{e} - \underline{r} ythro-pentofuranose (9a₁) was isolated as colorless prisms (mp 135-136 O C, 4% overall yield from 7a). By the similar chromatographic purification of 9c, $4-[(R)-cyclohexylphosphinyl]-\beta-analogue <math>9c$, (colorless needles, mp 146-147 $^{\circ}$ C, 3% yield from 7c) and its α -anomer 9c $_2$ (colorless syrup, 5% yield) were separated as pure compounds. 6) The configuration of 9a₁ and 9c_{1,2}, all approximately in the $\frac{3}{\text{T}_2}(\underline{\underline{\textbf{p}}})$ conformation, was established by analysis of their 500-MHz ¹H NMR spectra (see Table 1), by taking into account the known parameters of structurally related compounds obtained before; e.g., per-O-acetates 3) of 2. Those parameters for $\mathbf{9a}_1$ and $\mathbf{9c}_{1.2}$ are considered to be highly versatile in determining the structures of other 2,4-dideoxy-4-phosphinyl-D- and L-aldofuranoses, preparation of which is currently under investigation.

Table 1. 1 H NMR (500 MHz) Parameters for $9a_{1}$ and $9c_{1,2}$ in CDCl₃a)

											-,-	-			
	Chemical Shifts (δ) and Coupling Constants (Hz)														
Compd	H-1	н-2 н	-2' H-	-3 H4	H − 5	н'-5) Ac	:-1,3,	,5b)	R	- P	J	1,2	J _{1,2'}	
9a ₁	5.33	2.39 2	.38 5.	12 2.61	L 4.44	4.23	2.	13,2.	10,2.	10 1	.63C)		3.9	5.8	
$9c_1$	5.23	2.51 2	.02 5.	38 2.41	L 4.47	4.24	2.	16,2.	07,2.	05 2	.13 ^d)	4	4.4	6.9	
9 c ₂	5.49	2.67 1	.82 5.	48 2.58	3 4.45	4.27	2.	13,2.	11,2.	04 2	.13 ^d)	4	4.8	4.3	
	Coupling Constants (Hz)														
	J _{1,P}	J _{2,2} '	J _{2,3}	J _{2,P} J ₂	2',3 J	2',P	J _{3,4}	J3,P	J4,5	J4,5'	J _{4,P}	J5,5'	J _{5,P}	J5',P	
9a ₁	6.4	14.6	6.7	22.5	9.5	5.5	7.7	3.3	5.9	8.0	20.6	11.7	17.4	13.3	
$9c_1$	6.1	14.4	6.3	16.6	7.9	e)	6.3	7.0	6.8	8.4	6.3	11.7	6.8	11.3	
9c ₂	16.2	14.3	7.1	21.0	8.7	8.4	6.3	1.5	6.1	9.0	6.3	11.6	6.1	9.3	

a) Measured with a Varian VXR-500 instrument. b) The assignments of acetoxyl groups may be interchanged. c) For Me-P; $J_{Me,P}$ =13.5 Hz. d) For HC-P. For the remaining cyclohexyl protons: δ =1.25-1.95 (10H, m). e) Uncertain because of overlapping with the AcO signals.

References

- 1) H. Yamamoto and S. Inokawa, Adv. Carbohydr. Chem. Biochem., 42, 131 (1984);
 H. Yamamoto, T. Hanaya, N. Shigetoh, H. Kawamoto, and S. Inokawa, Chem. Lett.,
 1987, 2081; T. Hanaya, N. Shigetoh, and H. Yamamoto, Bull. Chem. Soc. Jpn., 61,
 2499 (1988) and references cited therein.
- 2) H. Yamamoto, K. Yamamoto, S. Inokawa, M. Yamashita, M.-A. Armour, and T.T. Nakashima, J. Org. Chem., 48, 435 (1983); H. Yamamoto, T. Hanaya, H. Kawamoto, S. Inokawa, M. Yamashita, M.-A. Armour, and T.T. Nakashima, ibid., 50, 3416 (1985).

 3) H. Yamamoto, Y. Nakamura, S. Inokawa, M. Yamashita, M.-A. Armour, and T.T. Nakashima, ibid., 50, 3416 (1985).
- shima, J. Org. Chem., 49, 1364 (1984); P. Luger, E. Müller, H. Yamamoto, and S. Inokawa, Carbohydr. Res., 145, 25 (1985).

 4) E.J. Hedgley, W.G. Overend, and R.A.C. Rennie, J. Chem. Soc., 1963, 4701.

 5) MS (high-resolution) and 1 NMR data (mostly at 500 MHz) were in agreement with
- the products described in this paper. The complete data for the newly isolated products as well as a result of a more precise conformational study will be presented in a future paper.
- 6) Besides these pure compounds, though not yet completely separated, other diastereomers of 9a and 9c were obtained from the remaining fractions. These were mostly compounds of 2-deoxy- \underline{D} -ribofuranose type but contained a minor proportion of the \underline{L} -threo-pentofuranoses (by NMR). Their complete separation and the characterization are in progress. Improvement of the synthetic route to the key intermediates 7 as well as optimization of the conversion of 7 to 9 are also under intensive investigation.

(Received July 15, 1988)